
Solutions and Comments on Homework 3
Decimals and Irrational numbers

• Looking at your charts for the period of the fraction 1
n
, what

can you say about the period compared to n?

In general, the period is always less than the denominator. You might
also notice that in the case where the denominator b is prime, the
period divides b − 1, although this is harder. It is a consequence of
Fermat’s Little Theorem, which states that if p is a prime and p 6 |a,
then ap−1 ≡ 1mod p. Thus, if p 6 |10, it follows that 10p−1 ≡ 1mod p.
Hence, the remainder in the p − 1st step of our algorithm for finding
decimals has become equal to 1, which for 1

p
is the starting remainder,

and as we shall see below, this forces the decimal to repeat. In general,
one can use Euler’s generalization to Fermat’s Little Theorem. This
states that if gcd(a, b) = 1 then aφ(b) ≡ 1mod b, where φ(b) is the
number of positive integers less than b that are relatively prime to b.
Again, if b is not divisible by 2 or 5, we have that the period of 1/b
must divide φ(b).

It is not true, however, that the period must equal either p− 1 in the
prime case or φ(b) in the other case as we can see by 1/37 is 3 and not
36.

• In the algorithm for finding the decimal expansion of a frac-
tion, how many different remainders can appear? What hap-
pens once the same remainder shows up twice?

Since we are dividing by the denominator, b, at each stage, and the
division algorithm tells us that the possible remainders are non-negative
integers that are less than b, the possibilities for the remainders are
0, 1, . . . , b− 1. Consequently there are b possible remainders.

Once the remainder repeats, the decimal repeats as we shall prove
below.

• Prove that the period of the fraction a
b

(a and b positive inte-
gers) must be less than b.



In this case, we must assume b > 1 (or say that a terminating decimal
has period 0 rather than 1). Let q0, q1, . . . be the quotients in our
algorithm (see the text for the algorithm) and let r0 = a, and r1, r2, . . .
be the remainders, so that

a = q0b+ r1

10r1 = q1b+ r2

10r2 = q2b+ r3,

and so on. First note that if any of the remainders are ever equal to 0,
all subsequent remainders must be equal to 0, so that the period is 1
and hence is less than b.

Assuming that ri 6= 0 for all i, we have that two of r0, r1, . . . , rb−1 must
be equal as there are only b− 1 non-zero remainders. Call these rk and
rl and suppose l < k, so that t = k− l > 0. We claim that for all j ≥ l
rj = rj + t. To see this, note that the result is true for j = l by our
choice of l and k. Assuming it is true for some fixed j > l, by definition
of our algorithm we have that

10rj = qj+1b+ rj+1 and

10rj = rj+t = qj+t+1b+ rj+t+1,

where 0 ≤ rj, rj+t+1 < b. Thus (qj+1, rj+1) and (qj+t+1, rj+t+1) are
both solutions to the divison algorithm for 10rj divided by b. However
the division algorithm says any two such solutions are equal so that
rj+1 = rj+t+1. The principle of mathematical induction now implies
that rj = rj+t for all j ≥ l. Using the uniqueness part of the division
algorithm result again, however, we see that qj+1 = qj+t+1 for all j ≥ l.
Thus the period of a/b is less than or equal to t. (We need that t is the
smallest such repetition to assure that the period equals t.)

• Show that you can multiply two irrational numbers and get a
rational product out. What does this say about the irrational
numbers and the closure laws?

By definition,
√

2
√

2 = 2. Hence the irrational numbers are not closed
under multiplication, since

√
2 is irrational. As −

√
2 is irrational, we

also have that the irrational numbers are not closed under addition
either since

√
2 + (−

√
2) = 0 is rational.



• We would like to show that one can raise an irrational num-
ber to an irrational power and get a rational number out.

Consider
√

2
√

2
and (

√
2
√

2
)
√

2. Suppose the first of these is
irrational. Show that the second gives an example of an irra-
tional number raised to an irrational power yielding a rational
number.

Calculating, we have (
√

2
√

2
)
√

2 =
√

2
√

2
√

2
=
√

2
2

= 2. Thus it is

rational. If we suppose that
√

2
√

2
is irrational, then we would have an

example of an irrational number raised to an irrational power giving a
rational number.

• Using the above, argue that there exist irrational numbers a
and b such that ab is rational.

We will prove that there exists a pair (a, b) of irrational numbers such
that ab is rational. We will not construct the pair, however. First,

suppose
√

2
√

2
is rational. Then we have an example taking a = b =

√
2

since we know by class that
√

2 is irrational.

On the other hand, if
√

2
√

2
is irrational, the previous problem gives

us that choosing a =
√

2
√

2
and b =

√
2 then ab is rational with each

irrational.
Q.E.D.

The question is 2
√

2 rational, algebraic, or transcendental? is a very
important question in 20th century mathematics. David Hilbert an-
nounced it as the 10th of his 23 problems at the International Math-
ematics Congress of 1900. It wasn’t solved for about 30 years until
Gelfand and Schneider proved that 2

√
2 is transcendental. They showed

something considerably harder, which we will discuss later in the term.

• Suppose you have four fractions a
b
, c
d
, x
y

and z
w

. Suppose further

that a
b
> x

y
and c

d
> z

w
. What can you say about a+c

b+d
and x+z

y+w
.

Basically, we can’t say anything. There exist examples where a+c
b+d

>
x+z
y+w

and vice versa. See below for the less obvious one. In fact, you
can find examples where you get equality.



• In 1983, Ken Oberkfell went 143 for 488 for the season, and
in 1984, Ken Oberkfell went 87 for 324 for the season. Mike
Scioscia was 11 for 35 in 1983 and 93 for 341 in 1984. Com-
pare their batting averages for 1983, 1984, and for the two
years together. Does this surprise you? This is an example of
Simpson’s paradox on fractions.

We have the following chart
Player 1983 1984 combined
Oberkfell .293 .269 .283
Scioscia .314 .273 .277

This is a surprise to most people because they usually misunderstand
averaging fractions and the importance of the numerator and the de-
nominator in applications. At some level, this is really an example of
why we don’t want to work solely with decimals. If I had just written
down the chart above, almost everyone would have been surprised by
the result. Decimals often obscure the dependence of a fraction on the
numerator and denominator. As most of us saw in the earlier prob-
lem on married couples, this confusion can seriously complicate our
student’s mathematical reasoning.


